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INTRODUCTION

Bile acids (BAs), the major lipid components of bile,
are synthetized from cholesterol in the liver and subse-
quently conjugated to taurine or glycine, leading to an in-
crease in their solubility. Immediately after synthetization,
BAs are secreted into bile, as well as concentrated and
stored in the gallbladder. Upon food intake, the gallblad-
der is stimulated by the entero-hormone cholecystokinin
(CCK) to release bile into the duodenum, where BAs aid
in the digestion and absorption of lipids and fat-soluble
vitamins.1 Fasting serum BAs concentrations in healthy
subjects are 0.2-0.7 μM to increase to 4-5 μM after each
meal.2.5 Most of the BAs in the ileum are reabsorbed and
return to the liver through the portal vein, and conse-
quently, hepatic BA synthesis is inhibited by a negative
feedback regulatory mechanism. However, BAs that es-

cape from intestinal reabsorption enter the colon, where
they are further transformed into the secondary and, more
hydrophilic BAs, by the resident gut microbiota.6

The role of bile in lipid metabolism goes beyond that
of fat emulsifier. Recent studies have also pointed to BAs
as signaling molecules with metabolic effects via interac-
tion with the nuclear receptors farnesoid X receptor
(FXR), pregnane X receptor (PXR), and vitamin D recep-
tor (VDR), G-protein coupled receptors such as GPBAR-
1, and cell signaling pathways such as c-Jun N-terminal
kinase (JNK) and extracellular signal-regulated kinase
(ERK). Through these interactions, BAs help to regulate
energy, glucose, lipids and lipoprotein metabolism.7

In this review, we summarize recent advances in the
complex BAs physiology, focusing on novel findings about
the regulatory mechanisms of BAs that are dependent and
independent of nuclear FXR. We also briefly discuss the
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The primary bile acids (BAs) are synthetized from cholesterol in the liver, conjugated to glycine or taurine to increase their solubility,
secreted into bile, concentrated in the gallbladder during fasting, and expelled in the intestine in response to dietary fat. BAs are also
bio-transformed in the colon to the secondary BAs by the gut microbiota, reabsorbed in the ileum and colon back to the liver, and
minimally lost in the feces. BAs in the intestine not only regulate the digestion and absorption of cholesterol, triglycerides, and fat-
soluble vitamins, but also play a key role as signaling molecules in modulating epithelial cell proliferation, gene expression, and lipid
and glucose metabolismby activating farnesoid X receptor (FXR) and G-protein-coupled bile acid receptor-1 (GPBAR-1, also known
as TGR5) in the liver, intestine, muscle and brown adipose tissue. Recent studies have revealed the metabolic pathways of FXR and
GPBAR-1 involved in the biosynthesis and enterohepatic circulation of BAs and their functions as signaling molecules on lipid and
glucose metabolism.
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interaction between host microbiota and dietary intake on
BA metabolism.

BIOSYNTHETIC PATHWAYS
OF BILE ACIDS (BAS)

BAs belong to a family of closely related acidic sterols
synthesized from cholesterol, and represent the main
catabolic pathway of cholesterol metabolism in humans.
BAs are classified as soluble amphiphiles because of the
ionized carboxylate or sulfonate group on the side chain
that makes BAs water-soluble. In general, BAs possess a
steroid nucleus of four fused hydrocarbon rings with po-
lar hydroxyl functions. De novo BA biosynthesis occurs in
the liver as the “primary” BAs, i.e., cholic acid (CA) and
chenodeoxycholic acid (CDCA). Afterwards, the water
solubility of BAs is increased by conjugation to either
taurine or glycine, followed by hepatic secretion of BAs
into bile and release by the gallbladder into the duode-

num after the meal.8 The aliphatic side chain is conjugat-
ed in amide linkage (N-acyl amidation) with glycine or
taurine at a ratio of 3:1 to increase water solubility of BAs
(glycine > taurine) in bile and reduce BA toxicity (Fig-
ure 1).2 In bile, BAs act as cholesterol carriers together
with phospholipids, and in the intestine, BAs act as sur-
factants and help the digestion and absorption of dietary
cholesterol, triglycerides, and fat-soluble vitamins.9

Thus, BAs are essential in biliary cholesterol secretion
and transport in bile, as well as hepatic catabolic prod-
ucts of endogenous cholesterol.

About 15% of conjugated BAs escape the absorption of
the terminal ileum and enter the colon, where the resi-
dent gut microbiota promotes the deconjugation and bi-
otransformation of the primary BAs into the secondary
BAs such as deoxycholic acid (DCA) and lithocholic acid
(LCA) and the tertiary BAs such as ursodeoxycholic acid
(UDCA), as shown in Figure 2. Approximately 50% of
DCA and a small amount of LCA and UDCA are re-ab-

Figure 1. A.Figure 1. A.Figure 1. A.Figure 1. A.Figure 1. A. The general structure of cholestane (classified as a saturated 27-carbon tetracyclic triterpene) is shown with numbering of the carbon atoms.
The four fused hydrocarbon rings are labelled as A, B, C, and D. Cholesterol is shown as 3D structure and chemical formula. B.B.B.B.B. Hepatic cholesterol in the
body is catabolized to bile acids (BAs), and cholic acid (CA) is shown as an example. CA possesses a steroid nucleus of four fused hydrocarbon rings with polar
hydroxyl functions and an aliphatic side chain in amide linkage with taurine or glycine (dotted lines). The two enzymes involved in this process are the BA CoA
synthase and the BA-CoA-amino acid N-acetyltransferase. The hydrophilic (i.e., polar) areas of BAs are the hydroxyl groups (-OH) (orientation of the hydroxyls:
3α, 7α, 12α) and conjugation side chain of either glycine or taurine. The hydrophobic (i.e., nonpolar) area is the ringed steroid nucleus.
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Figure 2.Figure 2.Figure 2.Figure 2.Figure 2. Major primary, secondary, and tertiary BAs of humans. The sites of BA synthesis and metabolism are shown. The “primary” BAs are synthetized in
the liver from cholesterol as precursor.The trihydroxy cholic acid (CA) and the dihydroxy chenodeoxycholic acid (CDCA). Two biosynthetic pathways are in-
volved: the classical pathway is initiated by 7α-hydroxylase (CYP7A1) which stimulates the 7α-hydroxylation of cholesterol with synthesis of 7α-hydroxycholes-
terol. A further step includes the activation of CYP8B1 for CA. CYP7A1 is involved in the synthesis of two primary BAs, CA and CDCA, and contributes to
more than 75% of total BA production. The alternative pathway is initiated by sterol-27-hydroxylase (CYP27A1), which produces the intermediate 27-hydroxyc-
holesterol and mainly CDCA. A further step includes the activation of CYP8B1 for CDCA. In the small and large intestine, the bacterial deconjugation, dehy-
drogenation, 7α-dehydroxylation, and epimerization of the primary BAs produces the “secondary” BAs. CA is converted to the dihydroxy deoxycholic acid (DCA)
and CDCA to the monohydroxy lithocholic acid (LCA). The 7α-dehydrogenation of CDCA form the dihydroxy 7a-oxo-LCA which does not accumulate in bile,
but is metabolized to a “tertiary” BA by hepatic or bacterial reduction to CDCA, mainly in the liver or its 7β-epimer, the dihydroxy ursodeoxycholic acid (UDCA),
primarily by colonic bacteria.2,9 The position and orientation of the hydroxyls for each BA is indicated in parenthesis.2,9,59
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sorbed in the terminal ileum and colon and return to the
liver via the portal vein. They enter the liver with assist-
ance of sodium taurocholate cotransporting polypeptide
(NTCP) transporter and organic anion transporting
polypeptide (OATP) transporter. The secondary BAs are
reconjugated with taurine or glycine. By contrast, all BAs
in feces are deconjugated and consist mainly of DCA and
LCA.

BAs constitute about two thirds of the solute mass of
normal human bile by weight. They belong to the class
of biliary lipids together with cholesterol and phospholi-
pids (Figure 3). The complex scenario related to BA bio-
synthesis, enterohepatic circulation and interactions with

ileal and liver receptors are depicted in Figure 4. Hepatic
synthesis of BAs accounts for 0.2-0.6 g/day with an overall
BA pool of about 3 g in the liver and intestine. More than
95% of the secreted BAs are reabsorbed through active ab-
sorption at the terminal ileum by the specific bile acid
transporter apical sodium-dependent bile acid transporter
(ASBT) and passive absorption in the colon. These BAs
are recirculated to the liver via the portal vein, i.e., the so-
called enterohepatic circulation, raising the overall pool to
3 g with the recirculation of 4-12 cycles per day, i.e., 12-36
g/day. Only about 5% (i.e., 0.2-0.6 g per day) of the secret-
ed BAs are lost in feces, equal to the amount of hepatic
synthesis (0.2-0.6 g/day).2
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Figure 3.Figure 3.Figure 3.Figure 3.Figure 3. A. A. A. A. A. Relative com-
position of solutes in hepatic
and gallbladder bile in health.
B.B.B.B.B. Relative composition of
BAs in bile: CA: cholic acid;
CDCA: chenodeoxycholic
acid; DCA: deoxycholic acid;
LCA: lithocholic acid; UDCA:
ursodeoxycholic acid.

Most of BAs remain in the enterohepatic circulation
and only minimum quantity enters the blood circulation
and is excreted into urine by the kidneys (< 1 μM/day).
However, biliary secretion of BAs is compromised in
hepatobiliary diseases. To alleviate BA accumulation, BAs
undergo sulfation by the enzyme sulfotransferase 2A1
(SULT2A1), mainly in the liver. The sulfated BAs are
more water soluble, and consequently, their absorption
rates in the intestines are decreased, while urinary elimi-
nation is increased over 100 times under these condi-
tions.10 The sulfated BAs constitute over 89% of urinary
BAs, and the majority of them are also amidated with gly-
cine or taurine. The degree of sulfation of BAs is inversely
related to their hydrophobicity, with LCA being almost
entirely sulfated in urine, while only half of the CA is
found to be sulfated. These results point to a critical role
for this detoxifying mechanism.11

The major physiological functions of BAs include the
digestion and absorption of intestinal cholesterol, triglyc-
erides, fatty acids,12 and fat-soluble vitamins,13 feedback
regulatory mechanisms of hepatic BA biosynthesis, and
gallbladder motor function.8 BAs also play a critical role
in the gut-liver axis in response to inflammation,14 im-
mune response,15-17 epithelial cell proliferation,18 intesti-
nal microbiota19 and gene expression through epigenetic

mechanisms.20 Recently, a new role of BAs has been pro-
posed for regulating transintestinal cholesterol excretion
and reverse cholesterol transport.21

BAs AND PHYSICAL
STATES OF BILIARY LIPIDS

BAs tend to self-assemble into micelles in an aqueous
solution when the critical micellar concentration (CMC)
is exceeded. Normally, the CMC values of most of BAs
are between 1 and 20 μM, but this value is greatly depend-
ent on the species of BAs, the ionic strength and composi-
tion, and types and concentrations of other solubilized
lipids. Another factor which influences the CMC is the
progressive bile concentration within the biliary tree and
especially in the gallbladder, in such a way that BA con-
centration steadily exceeds the CMCs.2 As a result, simple
micelles are formed in bile, which are able to solubilize
other types of lipids such as cholesterol and phospholip-
ids and lead to the formation of mixed micelles in bile.

Cholesterol and lecithins are virtually insoluble in wa-
ter, and bile is an aqueous solution. Thus, cholesterol and
lecithins require BAs for their transport in bile because
BAs contain both hydrophilic and hydrophobic areas,
which confer the property of amphiphilicity. The number
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Figure 4.Figure 4.Figure 4.Figure 4.Figure 4. Bile acid (BA) biosynthesis, enterohepatic circulation and function through their receptors in the liver and intestine.Complex molecular mechanisms
involve a set of nuclear receptors, i.e., farnesoid X receptor (FXR), retinoid X receptor (RXR), small heterodimer partner (SHP), liver receptor homologous-1
(LRH-1), and liver X receptor (LXR).77 FXR plays a key role as main sensor of BAs and regulator of synthesis, secretion and metabolism of BAs in the liver, ile-
um and colon.78,79 1.1.1.1.1. In the liver, the primary BAs (CA, CDCA) are mainly synthesized from cholesterol by the rate-limiting microsomal enzyme cholesterol 7α-
hydroxylase (CYP7A1) and by CYP8B1 at a later step (the “classical pathway”) and by the CYP27A1 (the “alternative pathway”). BAs are conjugated to taurine
or glycine mainly via two enzymes, BA CoA synthase (BACS) and BA-CoA-amino acid N-acetyltransferase (BAAT), secreted into bile by the bile salt export
pump (BSEP); the multidrug resistance-associated protein (MRP2) mediates secretion of organic substrates such as bilirubin, and glutathione. 2.2.2.2.2. Gallbladder:
bile is stored and concentrated because water absorption occurs, as well as periodically released into the duodenum due to gallbladder contraction in the fast-
ing state (about 20% emptying at the end of phase II of the migrating myoelectric complex80,81 under the control of the vagus and enterohormone motilin81

and especially after a meal due to the enterohormone cholecystokinin, CCK8). This rythmic activity is also modulated in concert with episodes of gallbladder re-
laxation/refilling due to the effect of the vasointestinal peptide (VIP, released in the duodenum by gastric acid), BAs per se (acting on the gallbladder receptor
GPBAR-1), and the intestinal FGF15/19 (following the BA/FXR interaction in the ileum) acting on the FGF4/β-Klotho receptor also expressed in the gallblad-
der.8,82,83 Fasting serum BAs concentrations in healthy subjects are 0.2-0.7 µM to increase to 4-5 µM after each meal.2-5 3.3.3.3.3. BAs are efficiently (i.e., > 95%)
reabsorbed in the terminal ileum. The remaining BAs enter the colon, undergo biotransformation to the secondary BAs by the resident gut microbiota, and un-
dergo passive diffusion and reabsorption. Only 5% of BAs are lost in feces every day. The enterohepatic circulation of BAs includes their intestinal re-absorption
and continuous recirculation to the liver through the portal vein. About 10-50% of re-absorbed BAs undergo peripheral spillover  into systemic circulation.84 4.4.4.4.4.
Upon arrival in the terminal ileum, BAs activate FXR and increase the transcription of the enterokine fibroblast growth factor 19 (FGF19 in humans or FGF15
in mice) which enters the portal circulation and regulates both gallbladder (see point 2) and liver effects (see point 5). BAs in the intestine also activate the G
protein-coupled receptor (GPBAR-1) and stimulate the secretion of peptide YY (PYY), glucagon-like peptide 1 (GLP-1) and glucagon-like peptide 2 (GLP-2), all
of which produce important metabolic effects on glucose metabolism,85 insulin metabolism and appetite acting on GPBAR-1 receptors located in the cells of
brown adipose tissue and muscle.85 In the ileocyte, BA uptake, intracellular transport and secretion into the portal vein require the apical sodium dependent bile
acid transporter (ASBT), the cellular intestinal BA binding protein (I-BABP), and the basolateral heterodimeric organic solute transporter (OSTα/β), respectively
(see inset 4a for details). 5.5.5.5.5. The circulating FGF19 binds to hepatic FGF receptor 4 (FGFR4)/β-Klotho to activatec-Jun N-terminal kinase/extracellular signal-
regulated kinase (JNK/ERK) signaling, which inhibits expression of CYP7A1 and CYP8B1 and hepatic BA synthesis, in synergy with the FXR-SHP inhibitory
pathway.70,86 BAs enter the liver by sodium taurocholate cotransporting polypeptide (NTCP) and organic anion transporting polypeptide (OATP) transporters
and act as physiological nuclear ligands for FXR, which regulates target gene transcription by binding toRXRs as a heterodimer.87 This results in increased
transcription of the small heterodimer partner (SHP) expression. SHP, in turn, inhibits LRH-1, preventing the activation of target genes that participate in BA
and fatty acid synthesis. In the absence of BAs, LRH-1 acts together with LXR to stimulate BA synthesis.55,88,89 FXR also regulates the enzymatic activity that
is involved in BA conjugation to glycine or taurine, and hepatic BA secretion by of BSEP and hepatic phospholipid secretion by ABCB4. BAs re-entering the liver
also interact with the liver GPBAR-1 expressed in Kupffer cells, in concert with the pathway activated by the FGFR4/β-Klotho. FXR activation also coordinates
BA detoxification enzymes (i.e., cytosolic sulfotransferase 2A1 [SULT2A1], aldol-keto reductase 1 B7 [AKR1B7], cytochrome P450 3A4/3a11 [CYP3A4/
Cyp3a11], and UDP-glycosyltransferase 2B4 [UTG2B4]).90 6.6.6.6.6. The events leading to BA excretion from the hepatocyte into the portal vein are shown in the in-
set. Specific transporters are the multidrug resistance protein 3 and 4 (MRP3, MRP4) and OSTα/β. 7.7.7.7.7. From the peripheral circulation, BAs also undergo renal
uptake by the apical sodium/dependent bile acid transporter (ASBT) in the proximal tubule. Glomerular filtration of BAs are regulated by MRP2, 3, 4 transport-
ers.91 Adapted from Ory, et al.92 and Inagaki, et al.,70 Garruti, et al.,77 Liu, et al.52
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more multilamellar vesicles form. If the ratio of choles-
terol to phospholipid in vesicles is greater than 1, vesi-
cles become increasingly unstable, which could lead to
the formation of solid plate-like cholesterol monohy-
drate crystals, the first step in cholesterol nucleation.
The following events leading to the formation of solid
cholesterol crystals and gallstone formation have been
summarized by our group in previous papers.2,30-32

BAs AND THE MICROBIOTA

The maintenance of an appropriate BA pool in the body
is determined by hepatic BA synthesis, biliary secretion,
gallbladder concentration and contraction, intestinal tran-
sit, microbial biotransformation, intestinal re-absorption
and fecal excretion (Figure 4). Intestinal bacteria play a
major role in BA metabolism because they are responsible
for the transformation of the primary BAs to the second-
ary BAs. The involved steps include deconjugation, oxida-
tion of hydroxyl groups in 3, 7 and 12 positions, and
7-dehydroxylation.6 The human gut microbiota is an ex-
tremely dynamic system in both health and disease,33-35

and therefore, has profound effects on the final BA profile.
This process significantly increases the hydrophobicity of
the BA pool, and as a consequence, the risk of potential
carcinogenic effects.36

On the other hand, BAs (mainly DCA) have antimicro-
bial properties and are able to influence the species of gut
microbiota. This is done by the detergent effects of DCA
on bacterial cell membranes, which damages the integrity
of the bacteria and modulates microbial populations.19 The
obstruction of bile flow is a major factor for bacterial
overgrowth and translocations in the intestine. In a mouse
model, this condition is reversed by oral administration of
BAs. This effect is modulated by FXR-induced gene ex-
pression, which is associated with the enteral protection
and the inhibition of bacteria damage to the intestinal mu-
cosa.37

Furthermore, the gut microbiota can be considered a
privileged interface between the environment (including
dietary habits at high risk for cancer development,38-40

smoking,41 ethanol consumption,42 environmental pollut-
ants as heavy metals and pesticides43-46) and BAs-mediated
signaling pathways7 regulating intestinal and metabolic
homeostasis and potentially inducing cancer onset and
growth.36

BAs AND DIETARY HABITS

Diets containing high content of animal proteins and
saturated fats increase bile secretion, augmenting BAs in
the intestine. These alterations markedly influence the
gut microbiota40,47,48 by favoring bacteria to increase the

and characteristics of hydroxyl groups and side chains
characterize their solubility in water and bile according to
the composition and concentration of other lipids. Thus,
BA aggregation in bile leads to a transformation from mon-
omers to simple micelles if concentration exceeds the
CMCs (~ 2 mmol/L). The simple micelles can solubilize
cholesterol because the hydrophobic portion of each BA
molecule faces in ward and the hydrophilic groups go out-
ward, with cholesterol being solubilized within the cen-
tral hydrophobic portion of the micelle. BA simple
micelles appear like disks, ~ 3 nm in diameter. After the
incorporation of phospholipids into simple micelles,
mixed micelles are formed and they are ~ 4-8 nm in diam-
eter, with the capacity to solubilize 3 times more choles-
terol. The mixed (BA-cholesterol-phospholipid) micelles
appear as a lipid bilayer. The hydrophilic groups of the
BAs and phospholipids are on the “outside” of the bilayer
in contact with the aqueous bile, and cholesterol mole-
cules are often solubilized by the hydrophobic groups on
the “inside” of the bilayer. The maximal solubility of cho-
lesterol occurs when the molar ratio of phospholipids to
BAs is between 0.2 and 0.3, and more cholesterol is solu-
bilized when the concentration of total biliary lipids in-
creases.

Using quasi-elastic light-scattering spectroscopy and
electron microscopy, model and native human bile is
studied22-24 to depict the pathways of biliary cholesterol
solubilization, which involve the formation of biliary
unilamellar vesicles25,26 and liquid crystals(i.e., multila-
mellar vesicles)27,28 as well as cholesterol nucleation and
crystallization in bile.29 The size of unilamellar vesicles
is ~ 40 to 100 nm in diameter, and they are spherical
structures with a single bilayer that encircles an aqueous
core. These structures are enriched with phospholipids
and cholesterol, but little BAs. Unilamellar vesicles can
aggregate and fuse to form large multilamellar vesicles
(liquid crystals or liposomes, ~ 500 nm in diameter),
which consist of multilamellar concentric spherical
structures. These vesicles are able to solubilize biliary
cholesterol that cannot be solubilized in simple and
mixed micelles. The compositions and proportions of
micelles and vesicles depend on the concentrations of
biliary lipids: with a dilute bile (i.e., total lipid concen-
tration < 3 g/dL), vesicles are stable (i.e.,no aggrega-
tionor fusion, or nucleation of solid cholesterol crystals).
For concentrated gallbladder bile (~ 10 g/dL), vesicle
instability is significantly increased, leading to the pre-
cipitation of solid cholesterol crystals. In the fasting
state, hepatic BA output is relatively low and cholesterol
is carried more in vesicles than in micelles. During
meals, the BA output is higher, and therefore, more cho-
lesterol is solubilized in micelles. With increasing BA
concentrations (i.e., in concentrated gallbladder bile),
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concentration of hydrophobic BAs (mainly DCA47,48) in
the total BA pool.39,49 In mice, a high-fat diet decreases
Lactobacillales and increases the Clostridium subcluster
XIVa, leading to an increase in serum levels of DCA. The
modified microbiota composition is suppressed by die-
tary supplement of agaro-oligosaccharides (a natural
derivate from agarose).48 In Apcmin/+ mice, treatment
with DCA alters the gut microbiota composition by
causing defective intestinal barrier function, intestinal
low-grade inflammation, and cancer progression. When
fecal microbiota is transplanted from DCA-treated mice
to another group of Apcmin/+ animals, an increased tu-
mor multiplicity is found likely due to activation of the
tumor-associated Wnt/β-catenin signaling pathway. Of
note, the cancer-promoting effects of BAs are blocked by
gut microbiota depletion through antibiotic treatment.36

As demonstrated in animals, the pathways linking a high-
fat diet to an alteration in intestinal microbiota are also
correlated with increased retention of hydrophobic BAs
in the liver, leading to hepatocellular carcinoma in ani-
mals with nonalcoholic steatohepatitis (NASH). This
pathogenic mechanism isalso supported by an inhibition
of key BA transporters secondary to high-fat diet-in-
duced liver inflammation and to a down-regulation of
the tumor suppressor gene CEBPα.50

BAs AS SIGNALING MOLECULES

As mentioned above, BAs display both hydrophilic and
hydrophobic surfaces, which makes these molecules high-
ly soluble, and detergent-like amphiphilic. The potency of
BAs as detergents depends on the distribution and orienta-
tion of hydroxyl groups around the steroid nucleus of the
molecule, a feature called hydrophobicity, which is quan-
tified by high performance liquid chromatography
(HPLC).2 The hydrophobicity of BAs, which is directly
related to cytotoxicity, is the following order: LCA>
DCA > CDCA > CA > UDCA.

BAs are also being recognized as signaling molecules in
the human body because they are able to regulate metabol-
ic and cellular functions by interaction with BA receptors.
BAs interact with the nuclear receptor superfamily such as
ligand-activated FXR and GPBAR-1.1 FXR is a master BA
sensor in the liver and ileum.51-53 The BA-FXR interaction
is essential in BA homeostasis: the rank order of potency
is CDCA > LCA = DCA > CA in the conjugated and un-
conjugated forms.54 FXR regulates a series of gene expres-
sion that is involved in the synthesis, uptake, secretion and
intestinal absorption of BAs, and all these processes are es-
sential in the regulation of intracellular Bas.2,55,56 FXR acti-
vation in the intestine increases expression of intestinal
fibroblast growth factor 19 (i.e., FGF19 in humans or
FGF15 in mice); in turn, the circulating FGF19 enters the

liver via the portal vein and reduces expression of hepatic
cholesterol 7α-hydroxylase and BA synthesis.57

BAs also interact with GPBAR-1 that is mainly ex-
pressed in Kupffer cells, but not hepatocytes.39,58 In this
case, the rank order of potency is TLCA > TDCA >
TCDCA > TCA.1 In the ileum, activation of GPBAR-1
increases levels of peptide YY (PYY) with anorexigenic ef-
fect (i.e., appetite reduction), as well as glucagon-like pep-
tide-1 (GLP-1) and glucagon-like peptide-2 (GLP-2).60

GPBAR-1 is also expressed and metabolically active in the
gallbladder, brown adipose tissue, skeletal muscle, macro-
phages, and monocytes1,59 and in the enteroendocrine cells
of the intestine.61 In particular, GPBAR-1 signalling in
skeletal muscle and brown adipose tissue results in local
activation of the type II iodothyronine deiodinase (DIO2)
able to generate or transform the inactive thyroxine (T4)
to active thyroid hormone (T3, a key regulator of metabo-
lism and energy homeostasis). In Kupffer cells and macro-
phages, GPBAR-1 activation inhibits LPS-induced
cytokine production.62 Such additional hormonal effects
of BAs are cAMP-mediated and might be particularly evi-
dent after bariatric surgery with important and beneficial
metabolic effects, including increased energy expenditure,
increased insulin secretion and/or sensitivity and decrease
inflammatory status.9,57,62 (see also chapter by Garruti, et al.
in the present issue). The mechanisms governing BA bio-
synthesis and the composition of the total BA pool are,
therefore, of paramount importance for keeping the over-
all digestive and metabolic functions of BAs in health.
This aspect involves a number of nuclear receptors in the
liver and intestine via FXR-dependent and -independent
mechanisms.

FXR-dependent mechanisms

Overall, cholesterol 7α-hydroxylase (CYP7A1) is the
rate-limiting enzyme for regulating BA synthesis and is a
target gene of FXR. Several factors such as BAs, inflamma-
tory cytokines, steroid hormones, and insulin may inhibit
CYP7A1 transcription through the 5’-upstream region of
the promoter.63-65 FXR is critical in this respect as a regu-
latory factor of BA metabolism because it down-regulates
CYP7A1, sterol 12α-hydroxylase (CYP8B1), and sterol 27-
hydroxylase (CYP27A1) transcription by a negative feed-
back mechanism.

In the hepatocyte, one regulatory mechanism in-
volves binding of BAs to FXR in the nucleus, the for-
mation of the FXR/RXR heterodimer, and the
activationof small heterodimer partner (SHP), leading
to an inhibition of the activity of liver receptor homol-
ogous-1 (LRH-1) and the CYP7A1 transcription.55,66

Furthermore, SHP displaces the promoter factor
HNF4α from PGC-1α, thus contributing to CYP7A1
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and CYP8B1 transcription. FXR also plays a role in de-
creasing BA cytotoxicity because it promotes expres-
sion of the enzymes involved in conjugation of BAs
with glycine or taurine, i.e., BA CoA synthase and BA-
CoA-amino acid N-acetyltransferase.67,68 Excessive ac-
cumulation of intrahepatic triglycerides during the
sequence non-alcoholic fatty liver, steatohepatitis is as-
sociated with abnormalities of gene expression of FXR
and SHP and BA transporters.69

In the ileum, a second regulatory mechanism of BA
synthesis involves the secretion of FGF19 and activation
of FGFR4 tyrosine kinase/β-klotho (a co-expressed mem-
brane-bound glycosidase) signaling in the hepatocyte ba-
solateral membrane.70,71 This pathway involves the
JNK-mediated pathway and suppression of CYP7A1 tran-
scription and points to the importance of the BAs/FXR/
FGF19/FGFR4/CYP7A1 signaling cascade which nega-
tively regulates BA biosynthesis in the liver in hu-
mans.2,72,73

FXR-independent mechanisms

FXR-independent BA inhibition of CYP7A1 transcrip-
tion might work by several parallel mechanisms to protect
against BA toxicity during cholestasis and liver injury.

• Insulin receptor and activation of PI3K and AKT lead
to phosphorylation of FoxO1 and inhibit CYP7A1
transcription.

• Activation of the pregnane X receptor (PXR) and vita-
min D receptor by LCA and binding to the BA re-
sponse element (BARE)-I sequence in the CYP7A1
promoter may inhibit CYP7A1 promoter activity.74

• Also, both PXR and vitamin D receptor inhibit
CYP7A1 transcription by blocking HNF4α recruit-
ment of PGC-1α to CYP7A1 chromatin.

• BAs also activate epidermal growth factor receptor
(EGFR) and the Raf-1/MEK/ERK signaling pathway,
thus inhibiting CYP7A1 transcription.

• The hepatocyte growth factor (HGF) is released from
hepatic stellate cells during liver regeneration and in-
jury, and HGF stimulates HGF receptor cMet and
MAPK pathways, leading to inhibition of CYP7A1
transcription and BA synthesis.

• Kupffer cells secrete TGFβ-1 that activate its receptor
TRβII and the SMAD signaling pathway in the hepato-
cyte. SMAD3 enters the nucleus of hepatocyte and
works with HDACs and mSin3A to inhibit HNF4α
activation of CYP7A1 transcription. A tumour sup-
pressor p53 interacts with HNF4α and inhibits
HNF4α activity. These alterations may inhibit
CYP7A1 transcription.

• Under certain circumstances, i.e., endotoxin-induced

cholestasis, lipopolysaccharides released by bacteria
stimulate the secretion of TNFα (alpha) and IL-1β
from Kupffer cells, leading to activation of Toll-like
receptor 4. TNFα and IL-1β may inhibit CYP7A1 tran-
scription by activating the TNF-α receptor and the
MAPK/JNK pathway in the hepatocyte. JNK may in-
hibit CYP7A1 and CYP8B1 transcription and BA syn-
thesis by phosphorylating cJun no period75.76 and
HNF4α.

CONCLUSIONS

BAs are synthesized mainly in the liver and are the major
lipid components of bile, as well as involved in hepatic cho-
lesterol catabolism. BAs released by the gallbladder enter the
gastrointestinal tract during the meal and are key regulators of
fat emulsion and solubilisation, two essential steps for the
digestion and absorption of cholesterol, triglycerides and fat-
soluble vitamins. BAs also act as signaling molecules by acti-
vating two main sensors in the body: the nuclear receptor
FXR and the cell surface receptor GPBAR-1. In this way,
BAs become key regulators of complex homeostatic path-
ways at a systemic level ranging from their own homeostasis
tocholesterol, triglyceride, glucose and energy metabolisms.
Additional regulations include cell proliferation, inflamma-
tion, and tumor onset and progression.

Thus, maintaining the precise balance between BA spe-
cies and amounts, as well as preventing the accumulation
of excessive BAs in the body are of importance under-
physiological or pathophysiological conditions that in-
volve the liver, intestine, muscle and adipose tissues.

In addition, the pathways involving the intestinal
microbiota and epigenetic factors regulate gene expres-
sion and act as a common interface between environmen-
tal factors (including diet, lifestyle, and exposure to
environmental toxics) and the molecular events promot-
ing the onset and the progress of disease. The high-fat diet,
for example, increases the fecal concentration of the sec-
ondary BAs that are a risk factor for the development of
colorectal cancer. Of note, intestinal microbiota and the
epigenome might be modulated by the primary preven-
tion strategies (i.e., changes in dietary habits and lifestyle,
and reduced exposure to environmental toxics) and thera-
peutic tools. Future studies are needed to better clarify
how these measures could influence pathogenic mecha-
nisms, disease onset and the efficacy of the available thera-
peutic tools.

ABBREVIATIONS

• BAs: bile acids
• CA: cholic acid
• CDCA: chenodeoxycholic acid
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• CMC: critical micellar concentration
• CYP7A1: cholesterol 7á-hydroxylase
• DCA: deoxycholic acid
• FGF: fibroblast growth factor
• FXR: farnesoid X receptor
• GPBAR-1: G-protein-coupled bile acid receptor-1

(also known as TGR5)
• JNK: c-Jun N-terminal kinase
• LCA: lithocholic acid
• UDCA: ursodeoxycholic acid
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