Mitochondria in non-alcoholic fatty liver disease

INÊS C.M. SIMÕES¹, ADRIANA FONTES², PAOLO PINTON³, HANS ZISCHKA²,⁴,* and MARIUSZ R. WIECKOWSKI¹**

¹Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3 Str., 02-093 Warsaw, Poland
²Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstaedter Landstraße 1, D-85764 Neuherberg, Germany
³Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
⁴Institute of Toxicology and Environmental Hygiene, Technical University Munich, Biedersteiner Straße 29, D-80802 Munich, Germany

*These authors share senior authorship.

#Address correspondence and reprint requests to:
Prof. Mariusz R. Wieckowski; Department of Biochemistry; Nencki Institute of Experimental Biology, Pasteur 3, Warsaw, Poland, Tel.: +48 22 5892372; Fax: +48 22 822 53 42
Email: m.wieckowski@nencki.gov.pl

ABSTRACT
NAFLD is a common disease in Western society and ranges from steatosis to steatohepatitis and to end-stage liver disease. The molecular mechanisms that cause the progression of steatosis to severe liver damage are not fully understood. One suggested mechanism involves the oxidation of biomolecules by mitochondrial ROS which initiates a vicious cycle of exacerbated mitochondrial dysfunction and increased hepatocellular oxidative damage. This may ultimately pave the way for hepatic inflammation and liver failure. This review updates our current understanding of mitochondria-derived oxidative stress in the progression of NAFLD.

ABBREVIATION SECTION
8-OHdG, 8-hydroxy-2-deoxyguanosine
Δψm, Mitochondrial membrane potential
AMPK, AMP-activated protein kinase
apoB, Apolipoprotein B
AST, Aspartate transaminase
ALT, Alanine transaminase
ATP, Adenosine triphosphate
CPT-1, Carnitine palmitoyl-transferase 1
dNA, Deoxyribonucleic acid
ER, Endoplasmic reticulum
ETC, Electron transport chain
FAO, Fatty acid oxidation
FFA, Free fatty acids
Gpx, Glutathione peroxidase
GSH, Glutathione
HFD, High-fat diet
HNE, 4-hydroxy-2-nonenal
IL, Interleukin
IR, Insulin resistance
iNOS, Inducible nitric oxide synthase
JNK, c-JunNH2-terminal kinase
MDA, Malondialdehyde
miR, MicroRNA
MPT, Mitochondrial permeability transition
mtDNA, Mitochondrial DNA
mtFAO, Mitochondrial FAO
mtGSH, Mitochondrial GSH
NADPH, Nicotinamide adenine dinucleotide phosphate
NAFLD, Non-alcoholic fatty liver disease
NASH, Non-alcoholic steatohepatitis
NF-кB, Nuclear factor kappa-B
NO, Nitric oxide
NRF-2, Nuclear respiratory factor 2
OXPHOS, Oxidative phosphorylation
PGC-1α, Peroxisome proliferative activated receptor-gamma coactivator-1α
PPAR-α, Peroxisome proliferator activated receptor-α
RNS, Reactive nitrogen species
ROS, Reactive oxygen species
SOD2, Superoxide dismutase 2
TCA, Tricarboxylic acid
TFAM, Mitochondrial transcription factor A
TG, Triglycerides
TLR, Toll-like receptor
TNF-α, Tumor necrosis factor-α
UCP2, Uncoupling protein 2
UPR, Unfolded protein response
VLDL, Very low density lipoprotein

ORGANELLE FACTS
Increased mitochondrial activity protects hepatocytes from the deleterious effects of FFAs deposition
Hepatic mitochondria are structurally and molecularly altered in NAFLD
Mitochondrial dysfunction in animal models of NAFLD is characterized by alterations in the abundance and activity of OXPHOS proteins
Decline in mitochondrial function provokes metabolic disturbances and may potentially contribute to NAFLD progression
Increased mitochondrial cholesterol accumulation is related with the progression of steatosis to steatohepatitis
mtDNA depletion has been found in NAFLD

KEYWORDS
Mitochondria, steatosis, ROS, NAFLD, NASH

1. INTRODUCTION

Fat accumulation in the liver is pathognomonic for non-alcoholic fatty liver disease (NAFLD) (see Box 1). This steatosis can progress to inflammatory NASH, fibrosis, cirrhosis and hepatocellular carcinoma, ultimately culminating in liver failure. Non-alcoholic steatohepatitis (NASH) development may be negatively propagated by the predisposition of individuals to genetic factors. In fact, several different genetic loci, PNPLA3, NCAN, GCKR and LYP/LAL1, have been identified as determinants of steatosis (Mehta et al., 2016). Sedentary lifestyles, dietary changes, epidemic obesity and type 2 diabetes further contribute to the worldwide increase in NAFLD, which currently affects 25% of the worldwide population.

Hepatic mitochondria are structurally and molecularly altered in NAFLD (Einer et al., 2017). As the cell powerhouse, a decline in mitochondrial function, concomitant with structural and molecular alterations, may provoke metabolic disturbances and may potentially contribute to NAFLD progression (Figures 1A and 1B). However, the sequence of events and signaling pathways that link mitochondrial remodeling and dysfunction to stages of NAFLD progression remain unclear.

2. PHYSIOLOGY AND PATHOLOGY OF MITOCHONDRIA IN NAFLD

2.1 Changes in mitochondrial metabolism in NAFLD (Figures 2A and 2B)

Steatosis

High-fat diets and the dysregulation of lipid metabolism cause the accumulation of hepatic free fatty acids (FFAs) and triglycerides (TGs) (Eccleston et al., 2011). Under these conditions, a metabolic shift is induced to overcome the hepatic FFA burden. This shift includes enhanced mitochondrial fatty acid oxidation (FAO), tricarboxylic acid (TCA) cycle induction and oxidative phosphorylation (OXPHOS) stimulation (Sunny et al., 2011). These pathways appear to be regulated by an increased expression of PPAR-α, which promotes FFA delivery to the mitochondria via CPT-1. Additionally, AMPK, which acts as the cell’s energy status sensor, inhibits de novo lipogenesis and increases FAO by decreasing malonyl-CoA levels and
NASH

Despite the attempts of the liver to recover from fat accumulation, in the long run, mitochondrial adaptation is insufficient to prevent lipotoxicity due to continuous FFAs deposition. This was demonstrated in a choline-deficient NAFLD model, which exhibited an increase in OXPHOS efficiency at 12 weeks but had lost capacity at 16 weeks (Teodoro et al., 2008). At this later time point, the mitochondria presented with alterations in the ETC complexes and membrane potential (Δψm), induced mitochondrial permeability transition (MPT) pore opening and reduced ATP synthesis (Teodoro et al., 2008). Accordingly, the capacity of the mitochondria to overcome the increased FFAs concentration was lost in more advanced stages of the disease. In these stages, disease progression was accelerated by CPT-1 downregulation, impaired mitochondrial FAO (mtFAO), and chronic ATP depletion caused by higher UCP2 expression in hepatocytes (Serviddio et al., 2008).

2.2. Mitochondrial participation in NAFLD progression to NASH

Progression to NASH

NASH is characterized by an inflammatory state due to ROS and RNS overproduction, lipotoxicity and an increase in pro-inflammatory and profibrogenic cytokines. Oxidative stress and lipid peroxidation activate NF-κB to induce pro-inflammatory cytokines, including TNF-α, IL-1β, IL-6 and IL-8 (Carter-Kent et al., 2008; Rodrigues et al., 2017). Furthermore, circulating mitochondrial DNA (mtDNA) released from damaged hepatocytes of mice fed a HFD, caused TLR9 activation, triggering a pro-inflammatory cytokine response and ultimately liver inflammation (Garcia-Martinez et al., 2016). The transition to NASH can also be related to adiponectin levels. Leprdb/db mice fed a HFD develop NASH with concomitantly diminished hepatic adiponectin, which is associated with adipose tissue inflammation and hepatic mitochondrial dysfunction (Handa et al., 2014). The increased levels of cytokines activate Kupffer and stellate cells, which induce collagen deposition and liver fibrosis (Yin et al., 2015). The subsequent activation of the caspase cascade helps establish a chronic injury that ultimately results in end-stage liver disease and cell death (Handa et al., 2014).

Mitochondrial involvement in NASH progression

Increased levels of the microRNA miR-21 have been reported in the liver of NASH patients and in animal models of NASH, with a concomitant increase in caspase-2 levels (Rodrigues et al., 2017). Activation of miR-21 through the mTOR/NF-κB pathway inhibits PPAR-α and exacerbates mitochondrial dysfunction and hepatocyte injury. In this state, the cell death causing opening of the MPT pore seems to play a critical role in hepatocyte cell death, as demonstrated using MPT inhibitors (Yin et al., 2015). Mitochondrial dysfunction in NASH decreases cellular ATP level, which may cause ER stress with the unfolded protein response (UPR) activation. The UPR is linked to the activation of de novo lipogenesis pathways and further aggravates steatosis (Lee et al., 2017). Recent studies have shown that prolonged

preventing CPT-1 inhibition (Rolo et al., 2012). Enhanced CPT-1 activity has been reported to protect NAFLD development. In fact, CPT-1 activation decreases serum markers of liver damage (AST, ALT, bilirubin, mtDNA) in treated NAFLD patients (Lim et al., 2010). Moreover, in early NAFLD, the up-regulation of UCP2 may protect cells from increased ROS levels (Serviddio et al., 2008). Therefore, increased mitochondrial activity appears to protect hepatocytes from the deleterious effects of FFAs deposition (Koliaki et al., 2015).
endoplasmic reticulum (ER) stress or chronic activation of the UPR also induces hepatocyte death and inflammation by the CHOP-dependent signaling pathway (Willy et al., 2015). Alterations in the abundance and activity of OXPHOS proteins (e.g., complex I, III and V) and antioxidant enzymes have been described during mitochondrial dysfunction in animal models of NAFLD (Eccleston et al., 2011; Rector et al., 2010). In fact, increased protein carbonylation has been observed in HFD-treated animals and in NAFLD patients. At the cellular level, these modifications may instigate the accumulation of misfolded proteins, thereby triggering ER stress and the UPR response (Willy et al., 2015). Moreover, incorrect protein folding, e.g., in apoB, an essential protein for very-low-density lipoprotein (VLDL), may impair lipid export from the liver and exacerbate steatosis in mice (Uchiyama et al., 2006).

Increased mitochondrial cholesterol accumulation is also related with the progression of steatosis to steatohepatitis. In NASH patients, the depletion of mitochondrial GSH (mtGSH) has been linked to the higher accumulation of cholesterol (Gan et al., 2014). This may be caused by the impaired transport of mtGSH from the cytosol to the mitochondria due to cholesterol-induced alterations in membrane permeability. High cholesterol has also been shown to sensitize ob/ob mice hepatocytes to TNF- and Fas-induced apoptosis and to cause mitochondrial GSH depletion (Mari et al., 2006).

2.3. Is mitochondria-related oxidative stress a key player in NAFLD pathology?

Mitochondria and ROS in NAFLD (Figures 3A and 3B)

In NAFLD, increased mitochondrial FAO and TCA cycle stimulation results in the enhanced supply of reducing equivalents to the electron transport chain (ETC). This over-reduction of the respiratory complexes promotes superoxide production (Aharoni-Simon et al., 2011). While complex I and III are considered major sites of superoxide, recent studies have suggested that other mitochondrial enzymes are also involved in this potentially detrimental process. Both 2-oxoglutarate dehydrogenase and glycerol 3-phosphate dehydrogenase may be necessary to maintain mitochondrial redox potential (Quinlan et al., 2013). Superoxide is enzymatically converted to hydrogen peroxide, which may cause mitochondrial damage and/or initiate signaling responses. To a lesser extent, extra-mitochondrial reactions may contribute to the elevated ROS/RNS production in NAFLD. The enzymes mediating these reactions include NADPH oxidase, xanthine oxidase and inducible nitric oxide synthase (iNOS) (Mantena et al., 2009). Collectively, these mechanisms may provoke a surplus of ROS (i.e., oxidative stress) in NAFLD. Under normal conditions cells efficiently counteract physiological ROS formation through their antioxidant defense system and by triggering metabolic adaptations that reduce substrate delivery to the TCA cycle. In NAFLD, however, parallel to the increased mitochondrial ROS production, the diminished expression and activity of ROS detoxification mechanisms (e.g., SOD2, catalase or GSH) have also been reported from in vitro and in vivo experiments (Besse-Patin et al., 2017).

Thus, a surplus of ROS/RNS and a reduced antioxidant defense capacity may develop in NAFLD. Table 2 lists the most recent works in cell culture, animal models or human patients that report on mitochondrial ROS production and its causal role in the oxidative damage of NAFLD. Notably, a pro-oxidative state appears to precede extensive mitochondrial damage and the subsequent mitochondrial impairment in NAFLD pathology (Koliaki et al., 2015).

Oxidative damage in mitochondria in NAFLD

Aside from enzymatic inactivation, oxidative stress is also linked to mtDNA alterations. MtDNA is sensitive to oxidative damage due to its proximity to the sites of ROS production and
lack of histones or DNA repair systems. NAFLD is characterized by mtDNA depletion and increased hepatic levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG), a marker of oxidized DNA (Koliaki et al., 2015). Moreover, oxidative damage to nuclear DNA may also amplify mitochondrial impairment by compromising the transcription of critical mitochondrial proteins. As a result, the expression levels of key regulatory factors involved in mitochondrial metabolism and organelle biogenesis, namely, PGC-1α, TFAM and NRF-2, have been reported to be reduced in NAFLD (Aharoni-Simon et al., 2011; Koliaki et al., 2015).

ROS can “attack” polyunsaturated fatty acids, leading to the production of aldehyde by-products, namely, MDA and HNE (Yin et al., 2015), that can diffuse from their site of origin, amplifying the effects of oxidative stress. Importantly, cardiolipin, a specific inner mitochondrial membrane phospholipid, is very susceptible to oxidative damage. In the presence of oxidized cardiolipin, altered membrane fluidity is associated with the destabilization and loss of ETC complex activity and the induction of MPT pore opening (Li et al., 2010). Moreover, the release of cytochrome c from cardiolipin into the cytosol can induce the caspase-mediated apoptotic pathway and trigger cell death (Kagan et al., 2005).

Finally, in NAFLD, ROS may be associated with ETC disruption, outer mitochondrial membrane permeabilization, altered Δψm and changes in mitochondrial structural integrity (Rector et al., 2010). Oxidative stress increases protein oxidation and lipid peroxidation and induces mitochondrial genome alterations. These mechanisms may thereby cause vicious cycle of mitochondrial oxidative damage and mitochondria-originating oxidative stress (Mantena et al., 2009).

Antioxidative treatment in NAFLD

Since the above studies have repeatedly reported oxidative mitochondrial damage, it is of interest to determine whether antioxidative treatments have a beneficial effect in NAFLD. In NAFLD animal models, the administration of lipoic acid resulted in preventive, therapeutic effects on hepatic steatosis by inhibiting de novo lipogenesis and by promoting a reduction in oxidative stress. Increased antioxidant enzyme (SOD2, GPx, GSH) abundance, reduced ROS production and increased mtDNA copy numbers have been reported (Geng et al., 2017; Valdecantos et al., 2012). Antioxidant ginkgolide A (GA) treatment in HFD mice increased the levels of anti-apoptotic Bcl-2, while a decrease in Bax, phosphorylated JNK, and cleaved caspase-3 and -9 levels were observed in the animal livers. Moreover, GA treatment also protected hepatocytes from inflammation (Jeong et al., 2017). Oxidative stress and lipid peroxidation are known factors that activate NF-κB to induce the increased production of pro-inflammatory cytokines. These factors contribute to the leukocyte recruitment, necro-inflammation, insulin resistance (IR) and fibrogenic factor release that ultimately cause end-stage liver disease (Rodrigues et al., 2017). Studies in various cell lines have shown that phenolic compounds reduce ROS and, therefore, may slow the progression of steatosis to fibrosis by reducing inflammation (decreased NF-κB phosphorylation) and endothelial cell migration (decreased NO release) (Jeong et al., 2017; Vergani et al., 2017).
therapies to counteract the spectrum of progressive liver disorders. Since oxidative stress is considered a key pathological feature of NAFLD progression, therapeutic approaches have focused on antioxidative compounds to counteract ROS. Studies with NAFLD mice have shown that HFD-induced effects, such as steatosis, early mitochondrial dysfunction and dysregulated oxidative balance, can be prevented in the presence of phenolic compounds (Geng et al., 2017; Valdecantos et al., 2012). Moreover, these types of compounds also limit pathological features such as apoptosis, inflammation and cell migration, which are typical for more advanced stages of NAFLD (Jeong et al., 2017; Vergani et al., 2017). However, despite these promising results, there are currently no effective treatments for the pathological alterations in NAFLD patients. Future studies are required to determine the efficacy of pharmaceuticals that target mitochondrial dysfunction in NAFLD.

4. ACKNOWLEDGMENTS

I.C.M.S, A.F., H.Z. and M.R.W. gratefully acknowledge the financial support for this research from the FOIE GRAS and mtFOIE GRAS projects. These projects received funding from the European Union’s Horizon 2020 Research and Innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 722619 (FOIE GRAS) and Grant Agreement No. 734719 (mtFOIE GRAS). P.P. is grateful to Camilla degli Scrovegni for continuous support.
5. BIBLIOGRAPHY

TABLE LEGENDS

Figure 1. Electron microscopy of mitochondria isolated from livers of C57BL/6NCrl mice fed either a normal (A) or high-fat (45% kcal from fat), high-fructose (23.1 g/l fructose, 18.9 g/l glucose) "Western diet" (Einer et al., 2017) (B) for 12 or 24 weeks, respectively. Such isolated mitochondria appeared intact, i.e., without outer membrane disruptions. Mitochondria from normal diet fed mice (A) appeared with regular and elongated cristae structures. In contrast, many mitochondria from Western diet fed mice (B) had ballooned or rounded cristae (arrow) as well as condensed matrix structures (asterisk). These structural peculiarities of the inner mitochondrial membrane may be accompanied by alterations in oxidative phosphorylation. Mouse liver mitochondria were isolated as recently reported by Schulz S. et al. PMID:25820715). Crude mitochondrial fractions were further purified by density gradient centrifugation at 9,000 x g using an 18/30/60% PercollTM gradient system. The purified organelles were washed in isolation buffer without BSA and subsequently fixed with 2.5% glutaraldehyde (Science Services GmbH, Germany), postfixed with 1% osmium tetroxide, dehydrated with ethanol, and embedded in Epon. Ultrathin sections were negative stained with uranyl acetate and lead citrate and then analyzed by transmission electron microscopy.

Figure 2. Mitochondrial metabolism and related mechanisms studied in the context of NAFLD. **Figure 2A** - Studies using animals and in vitro models; **Figure 2B** - Studies involving human subjects

Figure 3. Mitochondrial ROS production and related mechanisms studied in the context of NAFLD. **Figure 3A** - Studies using animals and in vitro models; **Figure 3B** - Studies involving human subjects
<table>
<thead>
<tr>
<th>Study’s PMID</th>
<th>Year</th>
<th>No. of patients</th>
<th>Sample, Analysis</th>
<th>Mitochondrial response</th>
</tr>
</thead>
<tbody>
<tr>
<td>27596120</td>
<td>2016</td>
<td>143 with NAFLD 102 with NASH</td>
<td>Liver biopsy; sequencing, SNP profiling</td>
<td>mitochondrial haplotype L modulates oxidative stress and the efficiency of GPxHOS, being less prevalent in NASH patients</td>
</tr>
<tr>
<td>1455645</td>
<td>2004</td>
<td>31 (with NAFLD or NASH)</td>
<td>Liver; enzyme activity assays, FRAP assay, Western blot</td>
<td>Increased protein carbonyl levels; decreased GSH, SOD, and catalase activities; increased CYP2E1 activity (in NASH patients)</td>
</tr>
<tr>
<td>25955209</td>
<td>2015</td>
<td>Obese insulin-resistant: 18 without NAFLD or NASH 15 with NAFLD 7 with NASH</td>
<td>Liver biopsy, TBARS assay, enzyme activity assay, immunoblotting, RT-PCR</td>
<td>Increased lipid peroxidation in all groups; increased ROS and 8-OH-deoxyguanosine levels in NASH group; decreased activity of catalase in NASH group</td>
</tr>
</tbody>
</table>
Box 1. NAFLD and NASH facts

- In NAFLD 5% of the liver cells present micro- or macrovesicular steatosis.
- Obesity, diabetes, hyperlipidaemia and high blood pressure (features of metabolic syndrome) are NAFLD risk factors.
- 90% of NAFLD patients have at least one of the above mentioned features.
- There are no clinical symptoms associated to steatosis during the early development of NAFLD.
- 10-25% of NAFLD patients progress to inflammatory steatohepatitis (NASH).
- NASH is diagnosed by liver biopsy.
- NASH features include macrosteatosis, hepatocyte ballooning and lobular inflammation.
- These lesions define the NAFLD activity score (NAS) used to classify NAFLD grading.
- No drugs/therapies are approved for NAFLD treatment.
- Current treatment strategies for NAFLD patients aim at the amelioration of risk factors through lifestyle and dietary changes.